Fit an ML-UMR model to perform population-adjusted indirect comparison between treatments in disconnected networks using IPD and AgD.
Usage
mlumr(
data,
spfa = TRUE,
prior_intercept = prior_normal(0, 10),
prior_beta = prior_normal(0, 10),
prior_sigma = prior_normal(0, 10),
iter_warmup = 1000,
iter_sampling = 2000,
chains = 4,
parallel_chains = chains,
refresh = 100,
seed = NULL,
adapt_delta = 0.95,
max_treedepth = 15,
...
)Arguments
- data
An
unanchored_dataobject with integration points- spfa
Logical. If TRUE, invoke Shared Prognostic Factor Assumption (regression coefficients shared between treatments). If FALSE, allow treatment-specific coefficients (effect modification). Default TRUE.
- prior_intercept
Prior for treatment intercepts (see
prior_normal)- prior_beta
Prior for regression coefficients
- prior_sigma
Prior for residual standard deviation (normal likelihood only, default
prior_normal(0, 10)). Ignored for binomial and Poisson likelihoods.- iter_warmup
Number of warmup iterations (default 1000)
- iter_sampling
Number of sampling iterations (default 2000)
- chains
Number of MCMC chains (default 4)
- parallel_chains
Number of chains to run in parallel (default: all)
- refresh
How often to print progress (0 = no output, default 100)
- seed
Random seed for reproducibility
- adapt_delta
Target acceptance rate (default 0.95)
- max_treedepth
Maximum tree depth (default 15)
- ...
Additional arguments passed to cmdstanr::sample()