Generate simulated data for unanchored comparisons matching the design from the ML-UMR abstract: two single-arm studies with correlated prognostic factors and binary outcomes.
Arguments
- n_index
Sample size for index treatment (IPD)
- n_comparator
Sample size for comparator treatment (AgD)
- n_covariates
Number of prognostic factors
- effect_modification
Degree of effect modification: "none" (SPFA holds), "moderate", or "strong"
- population_shift
Mean difference in covariates between populations
- correlation
Correlation between covariates
- likelihood
Outcome type: "binomial" (default), "normal", or "poisson"
- agd_type
Type of AgD output: "summary" (single summary row) or "subgroups" (multiple subgroups based on covariate median splits). Default "summary".
- seed
Random seed for reproducibility
Value
A list with components:
- ipd
Data frame with IPD
- agd
Data frame with AgD summaries
- truth
List of true parameter values
Examples
if (FALSE) { # \dontrun{
# SPFA scenario (no effect modification)
data_spfa <- generate_simulation_data(
n_index = 200,
n_comparator = 150,
n_covariates = 2,
effect_modification = "none",
seed = 123
)
# Strong effect modification
data_em <- generate_simulation_data(
n_index = 200,
n_comparator = 150,
n_covariates = 2,
effect_modification = "strong",
seed = 456
)
} # }