Creates a self-contained HTML report summarizing ML-UMR model results, including diagnostics, treatment effects, adjusted vs unadjusted comparisons, and optional model comparison.
Usage
generate_report(
object,
output_file = "mlumr_report.html",
output_dir = getwd(),
title = "ML-UMR Analysis Report",
author = NULL,
comparison_fit = NULL,
include_diagnostics = TRUE,
include_effects = TRUE,
include_forest_comparison = TRUE,
include_covariates = TRUE,
include_tables = TRUE,
include_comparison = TRUE,
theme = c("flatly", "default", "cerulean", "cosmo"),
open = TRUE,
quiet = FALSE,
...
)Arguments
- object
An
mlumr_fitobject (required)- output_file
Character. Filename for output HTML (default: "mlumr_report.html")
- output_dir
Character. Directory for output (default: current working directory)
- title
Character. Report title (default: "ML-UMR Analysis Report")
Character. Report author (default: NULL, omits author line)
- comparison_fit
Optional second
mlumr_fitobject for model comparison- include_diagnostics
Logical. Include MCMC diagnostics section? (default: TRUE)
- include_effects
Logical. Include treatment effects section? (default: TRUE)
- include_forest_comparison
Logical. Include adjusted vs unadjusted forest plot? (default: TRUE)
- include_covariates
Logical. Include covariate distributions? (default: TRUE)
- include_tables
Logical. Include parameter tables? (default: TRUE)
- include_comparison
Logical. Include model comparison if comparison_fit provided? (default: TRUE)
- theme
Character. Bootstrap theme: "flatly", "default", "cerulean", "cosmo" (default: "flatly")
- open
Logical. Open report in browser after generation? (default: TRUE)
- quiet
Logical. Suppress rmarkdown progress messages? (default: FALSE)
- ...
Additional arguments passed to
rmarkdown::render()
Examples
if (FALSE) { # \dontrun{
# Basic report
generate_report(fit)
# Custom title and author
generate_report(fit, title = "My Analysis", author = "John Doe")
# Compare SPFA and relaxed models
generate_report(fit_spfa, comparison_fit = fit_relaxed)
# Minimal report
generate_report(fit, include_diagnostics = FALSE, include_covariates = FALSE)
} # }